Publication
Journal
- “Dynamic and static workout of in vitro skeletal muscle tissue through a weight training device”
(* equal contribution) Byeongwook Jo*, Kentaro Motoi*, Yuya Morimoto, and Shoji Takeuchi
Advanced Healthcare Materials, available online, 2401844, 2024 - “Harnessing the Propulsive Force of Microalgae with Microtrap to Drive Micromachines”
(* equal contribution) Haruka Oda*, Naoto Shimizu*, Yuya Morimoto, and Shoji Takeuchi
Small, vol. 20, 2402923, 2024 - “Pillar electrodes embedded in the skeletal muscle tissue for selective stimulation of biohybrid actuators with increased contractile distance”
Tingyu Li, Minghao Nie, Yuya Morimoto, and Shoji Takeuchi
Biofabrication, vol. 16, 035022, 2024 - “Biohybrid bipedal robot powered by skeletal muscle tissue”
Ryuki Kinjo, Yuya Morimoto, Byeongwook Jo, and Shoji Takeuchi
Matter, vol. 7 (3), pp. 948-962, 2024 - “Biohybrid tensegrity actuator driven by selective contractions of multiple skeletal muscle tissues”
Kazuma Morita, Yuya Morimoto, and Shoji Takeuchi
Biofabrication, vol. 15, 045002, 2023 - “Real-time quantitative characterization of ion channel activities for automated control of a lipid bilayer system”
Kazuo Ogishi, Toshihisa Osaki, Hisatoshi Mimura, Izumi Hashimoto, Yuya Morimoto, Norihisa Miki, and Shoji Takeuchi
Biosensors and Bioelectronics, vol. 237, 115490, 2023 - “Co-culture system of human skin equivalents with mouse neural spheroids”
Satoshi Inagaki, Yuya Morimoto, Ikuo K. Suzuki, Kazuo Emoto and Shoji Takeuchi
Journal of Bioscience and Bioengineering, vol. 136 (3), pp. 239-245, 2023 - “Microfluidic Device to Manipulate 3D Human Epithelial Cell-Derived Intestinal Organoids”
(* equal contribution) Miki Matsumoto*, Yuya Morimoto*, Toshio Sato, and Shoji Takeuchi
Micromachines, vol. 13 (12), 2082, 2022 - “Living skin on a robot”
Michio Kawai, Minghao Nie, Haruka Oda, Yuya Morimoto, and Shoji Takeuchi
Matter, vol. 5 (7), 2190-2208, 2022 - “3D-printed centrifugal pump driven by magnetic force in applications for microfluidics in biological analysis”
Byeongwook Jo, Yuya Morimoto, and Shoji Takeuchi
Advanced Healthcare Materials, vol. 11, 2200593, 2022 - “Functional analysis of human brain endothelium using a microfluidic device integrating a cell culture insert”
Shigenori Miura, Yuya Morimoto, Tomomi Furihata and Shoji Takeuchi
APL Bioengineering, vol. 6 (1), 016103, 2022 - “3D printed microfluidic devices for lipid bilayer recordings”
Kazuto Ogishi, Toshihisa Osaki, Yuya Morimoto, and Shoji Takeuchi
Lab on a Chip, vol. 22, 890-898, 2022 - “Skeletal muscle-adipose cocultured tissue fabricated using cell-laden microfibers and a hydrogel sheet”
Byeongwook Jo, Yuya Morimoto, and Shoji Takeuchi
Biotechnology and Bioengineering, vol. 119 (2), 636-643, 2021 - “A Cylindrical Molding Method for the Biofabrication of Plane-Shaped Skeletal Muscle Tissue”
(* equal contribution) Minghao Nie*, Ai Shima*, Kenta Fukushima*, Yuya Morimoto, and Shoji Takeuchi
Micromachines, vol. 12 (11), 1411, 2021 - “Microfluidic system for applying shear flow to endothelial cells on culture insert with collagen vitrigel membrane”
Yuya Morimoto, Shogo Nagata, Miki Matsumoto, Keisuke Sugahara, Shigenori Miura and Shoji Takeuchi
Sensors and Actuators B: Chemical, vol. 348, 130675, 2021 - “Cell-based biohybrid sensor device for chemical source direction estimation”
(*equal contribution) Haruka Oda*, Kazunori Kihara*, Yuya Morimoto, Sho Takamori, and Shoji Takeuchi
Cyborg and Bionic Systems, vol. 2021, 8907148, 2021 - “Formation of contractile 3D bovine muscle tissue for construction of millimetre-thick cultured steak”
(*equal contribution) Mai Furuhashi*, Yuya Morimoto*, Ai Shima, Futoshi Nakamura, Hiroshi Ishikawa and Shoji Takeuchi
npj Science of Food, vol. 5, 6, 2021 - “Biohybrid robot with skeletal muscle tissue covered with a collagen structure for moving in air”
Yuya Morimoto, Hiroaki Onoe, Shoji Takeuchi
APL Bioengineering, vol. 4 (2), 026101, 2020 - “A dynamic microarray device for pairing and electrofusion of giant unilamellar vesicles”
Keisuke Sugahara, Yuya Morimoto, Sho Takamori, Shoji Takeuchi
Sensors and Actuators B: Chemical, vol. 311, 127922, 2020 - “Biohybrid device with antagonistic skeletal muscle tissue for measurement of contractile force”
Yuya Morimoto, Hiroaki Onoe, Shoji Takeuchi
Advanced Robotics, vol. 33 (5), pp. 208-218, 2019 - “Centrifuge-based step emulsification device for simple and fast generation of monodisperse picoliter droplets”
Dong-Chel Shin, Yuya Morimoto, Jun Sawayama, Shigenori Miura, Shoji Takeuchi
Sensors and Actuators B: Chemical, vol. 301, 127164, 2019 - “Temporal observation of adipocyte microfiber using anchoring device”
Akiyo Yokomizo, Yuya Morimoto, Keigo Nishimura, Shoji Takeuchi
Micromachines, vol. 10 (6), 358, 2019 - “Portable biohybrid odorant sensors using cell-laden collagen micropillars”
Yusuke Hirata, Yuya Morimoto, Eunryel Nam, Shoji Takeuchi
Lab on a Chip, vol. 19, pp. 1971-1976, 2019 - “Perfusable and stretchable 3D culture system for skin-equivalent”
Nobuhito Mori, Yuya Morimoto, Shoji Takeuchi
Biofabrication, vol. 11, 011001, 2019 - “Three-dimensional printed microfluidic modules for design changeable coaxial microfluidic devices”
Yuya Morimoto, Mahiro Kiyosawa, Shoji Takeuchi
Sensors and Actuators B: Chemical, vol. 274, pp. 491-500, 2018 - “Biohybrid robot powered by an antagonistic pair of skeletal muscle tissues”
Yuya Morimoto, Hiroaki Onoe, Shoji Takeuchi
Science Robotics, vol. 3, pp. eaat4440, 2018, selected as the top cover of the issue, highlighted in Science - “Three-dimensional contractile muscle tissue consisting of human skeletal myocyte cell line”
Ai Shima, Yuya Morimoto, Hugh L. Sweeney, Shoji Takeuchi
Experimental Cell Research, vol. 370 (1), pp. 168-173, 2018 - “Multipoint bending and shape retention of a pneumatic bending actuator by a variable stiffness endoskeleton”
Shotaro Yoshida, Yuya Morimoto, Lanying Zheng, Hiroaki Onoe, and Shoji Takeuchi
Soft Robotics, vol. 5 (6), pp. 718-725, 2018 - “Formation of branched and chained alginate microfibers using theta-glass capillaries”
Keigo Nishimura, Yuya Morimoto, Nobuhito Mori, Shoji Takeuchi
Micromachines, vol. 9, 303, 2018 - “Mass production of cell-laden calcium alginate particles with centrifugal force”
Yuya Morimoto, Maiko Onuki, Shoji Takeuchi
Advanced Healthcare Materials, vol. 6, 1601375, 2017 - “Pesticide vapor sensing using an aptamer, nanopore, and agarose gel on a chip”
Satoshi Fujii, Aiko Nobukawa, Toshihisa Osaki, Yuya Morimoto, Koki Kamiya, Nobuo Misawa, Shoji Takeuchi
Lab on a chip, vol. 17, pp.2421-2425, 2017 - “Self-propelled motion of monodisperse underwater oil droplets formed by a microfluidic device”
Naoko Ueno, Taisuke Banno, Arisa Asami, Yuki Kazayama, Yuya Morimoto, Toshihisa Osaki, Shoji Takeuchi, Hiroyuki Kitahara, Taro Toyota
Langmuir, vol. 33, pp. 5393-5397, 2017 - “Skin integrated with perfusable vascular channels on a chip”
Nobuhito Mori, Yuya Morimoto, Shoji Takeuchi
Biomaterials, vol. 116, pp. 48-56, 2017 - “Human induced pluripotent stem cell-derived fiber-shaped cardiac tissue on a chip”
Yuya Morimoto, Saori Mori, Fusako Sakai, Shoji Takeuchi
Lab on a Chip, vol. 16, pp. 2295-2301, 2016 - “Balloon Pump with Floating Valves for Portable Liquid Delivery”
Yuya Morimoto, Yumi Mukouyama, Shohei Habasaki, Shoji Takeuchi
Micromachines, vol. 7, 39, 2016 - “Vessel-like channels supported by poly-l-lysine tubes”
Nobuhito Mori, Yuya Morimoto, Shoji Takeuchi
vol. 122, pp. 753-757, 2016 - “An inhalation anesthetic device for stereotaxic operation on mouse pups”
Sachine Yoshida, Yuya Morimoto, Taishi Tonooka, Shoji Takeuchi
Journal of Neuroscience Methods, vol. 243, pp. 63-67, 2015 - “Liquid-filled tunable lenticular lens”
Yoshinobu Iimura, Hiroaki Onoe, Tetsuhiko Teshima, YunJung Heo, Shotaro Yoshida, Yuya Morimoto, Shoji Takeuchi
Journal of Micromechanics and Microengineering, vol. 25, 035030, 2015 - “Three-dimensional neuron-muscle constructs with neuromuscular junctions”
Yuya Morimoto, Midori Kato-Negishi, Hiroaki Onoe, Shoji Takeuchi
Biomaterials, vol. 34, pp. 9413-9419, 2013 - “Construction of 3D, Layered Skin, Microsized Tissues by Using Cell Beads for Cellular Function Analysis”
Yuya Morimoto, Risa Tanaka, Shoji Takeuchi
Advanced Healthcare Materials, vol. 2, pp. 261-265, 2013 - “Millimeter-Sized Neural Building Blocks for 3D heterogeneous Neural Network Assembly”
Midori Kato-Negishi, Yuya Morimoto, Hiroaki Onoe, Shoji Takeuchi
Advanced Healthcare Materials, vol. 2, pp. 1564-1570, 2013 selected as the front cover of the issue, highlighted on Materials views - “A hybrid axisymmetric flow-focusing device for monodisperse picoliter droplets”
Yuya Morimoto, Kaori K.-Shigetomi, Shoji Takeuchi
Journal of Micromechanics and Microengineering, vol. 21, pp. 054031, 2011 - “Molding cell beads for rapid construction of macroscopic 3D tissue architecture”
(*equal contribution) Yukiko T.-Matsunaga*, Yuya Morimoto*, Shoji Takeuchi
Advanced Materials, vol. 23, pp. H90-94, 2011, cover of the Advanced Healthcare Materials - “Monodisperse cell-encapsulating peptide microgel beads for 3D cell culture”
Yukiko Tsuda, Yuya Morimoto and Shoji Takeuchi
Langmuir, vol. 24, pp. 2645-2649, 2010 - “Monodisperse semi-permeable microcapsules for continuous observation of cells”
Yuya Morimoto, Wei-Heong Tan, Yukiko Tsuda, Shoji Takeuchi
Lab on a Chip, vol. 9, pp. 2217-2223, 2009 - “Three-Dimensional Axisymmetric Flow-Focusing Device using Stereolithography”
Yuya Morimoto, Wei-Heong Tan, Shoji Takeuchi
Biomedical Microdevices, vol. 11, pp. 369-377, 2009
Review
- “Biohybrid softrobot driven by contractions of skeletal muscle tissue”
Yuya Morimoto, Shoji Takeuchi
Journal of Robotics and Mechatronics, vol. 34 (2), pp. 260-262, 2022 - “Biofabrication strategies for 3D in vitro models and regenerative medicine”
Lorenzo Moroni, Jason Burdick, Christopher Highley, Sang Jin Lee, Yuya Morimoto, Shoji Takeuchi, James Yoo
Nature reviews materials, vol. 3, pp. 21-37, 2018 - “Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly”
Yuya Morimoto, Amy Y. Hsiao, Shoji Takeuchi
Advanced Drug Delivery Reviews, vol. 95, pp. 29-39, 2015 - “Three-dimensional cell culture based on microfluidic techniques to mimic living tissues”
Yuya Morimoto, Shoji Takeuchi
Biomaterials Science, vol. 1, pp. 257-264, 201
Book
- “Chapter, Biological Material, Chapter, Soft Actuators”
Yuya Morimoto, Shoji Takeuchi
The Science of Soft Robot (Springer), 2023 - “Chapter 16, Biohybrid Robot Powered by Muscle Tissues”
Yuya Morimoto, Shoji Takeuchi
Mechanically Responsive Materials for Soft Robotics (Wiley), pp. 395-416, 2020 - “In vitro tissue construction for organ-on-a-chip application”
Yuya Morimoto, Nobuhito Mori, Shoji Takeuchi
Applications of Microfluidic Systems in Biology and Medicine (Springer), pp. 247-274, 2019 - “Chapter 21 Photo-Induced Fabrication Technology for 3D Microdevices”
Daniela Serien, Yuya Morimoto, Shoji Takeuchi
Advanced Mechatronics and MEMS Devices II (Springer), pp. 469-493, 2016 - “8. Microfluidic Formation of Cell-Laden Hydrogel Modules for Tissue Engineering”
Yuya Morimoto, Yukiko T.-Matsunaga, Shoji Takeuchi
Micro and Nanotechnologies in Engineering Stem Cells and Tissues (Wiley), pp. 183-201, 2013